产品分类
Product Category年来中国生物医药行业市场规模保持较快增长。2016-2022年,我国生物医药行业的市场规模呈波动增长趋势,2020年由于疫情影响,生物医药行业规模有所下降。2022年,我国生物医药行业的市场规模约为18680亿元,较2021年同比增长8.30%。冻干是制造稳定的生物制药产品的方法,目前50%的生物药采用冻干制剂从而保证其使用稳定性。由于生物药的复杂性和敏感性,通常加入药物特异性辅料来优化冻干过程,以使其生物活性成分稳定。例如,皮下注射治疗性蛋白药物由于粘度高导致可注射性降低和复溶时间增长,需要加入降粘剂,以降低溶液粘度。
生物制剂处方稳定性
溶液中的蛋白质通常不稳定,冻干是实现稳定生物制药配方的主要方法,但受冻干条件影响,蛋白质分子可能会不稳定。化学不稳定性会导致肽共价键的形成或破坏,从而产生新的化学体。常见的过程包括氧化、脱酰胺和异构化。脱酰胺容易发生在中性和碱性pH值下,碱性条件下的脱酰胺比例是酸性条件下的三倍。
异构化通常发生在中性或酸性条件下,可能导致蛋白分子的亲和力降低。物理不稳定会导致蛋白质变性和聚集,影响物理稳定性的因素包括 pH 值、温度、离子强度、冻融、蛋白质浓度和机械应力。糖、聚合物、表面活性剂、多元醇和氨基酸等辅料对于在冻干和储存期间稳定生物蛋白制剂至关重要,但由于肠外制剂的监管要求,其选择十分有限。
生物制药药物冻干过程
冻干是在冷冻后通过升华从生物制药药物中去除水分的过程,这种技术的时间和经济成本通常较高。冻干过程包括冷冻、初级和次级干燥步骤。
冷冻步骤旨在将大部分水变成冰,形成冻结浓缩溶液。冷冻期间的温度必须设置在最大冻结浓度溶液的玻璃化转变温度和结晶材料的共晶温度以下。退火是冷冻后执行的一步,可形成更大、更均匀的冰晶并使填充剂结晶,从而提高初级干燥的效率。冷冻过程中蛋白质分子所在的体系特性会发生变化,影响产品的稳定性。冷却速度会影响冰晶的大小和形态,进而影响冻干的干燥阶段。蛋白质浓度、类型和退火步骤的加入也会影响产品复溶时间。
初级干燥通过升华去除冷冻的游离水,适当选择板层温度和压力值可以缩短该过程。初级干燥是冻干过程中最耗时和能量的阶段,通常最佳压力为0.1-0.2 mbar,板层温度选择基于玻璃化转变温度Tg'和塌陷温度Tc。通常将产品温度保持在Tg'以下2-3°C以保持蛋白质稳定性,但是适当的处方优化甚至允许产品在Tg'或Tc以上进行干燥。当产品温度Tp等于板层温度时,初级干燥即完成。通常Tg'和Tc可以分别通过差示扫描量热法和冻干显微镜来确定。
二次干燥通过解吸去除未冷冻的结合水,以避免储存期间出现蛋白质稳定性问题。为了避免样品崩溃,应逐渐提高板层温度,一般不超过50°C,时间通常不超过6h。干燥结束后,产品中的残留水分为应符合要求。根据QbD原则,过程分析技术的主要目的是提高过程效率并保证产品的关键质量属性。压力温度测量是一种压力上升测试,当干燥室中的蒸汽压力不再上升时,初级干燥完成。此外,通过使用近红外和拉曼探头,可以监测冻干配方的中间参数,例如过程诱导的转变、结晶、固态化、多晶型转化和残余水分含量。过程分析技术工具以及相应的属性如下表。
冻干制剂辅料
选择合适辅料能有助于产品在冻干过程中获得理想的质量属性和稳定性,并降低生产的时间和经济成本,提高产量。
1. 稳定剂
冻干过程中蛋白质的稳定基于两种主要机制:玻璃化和水置换理论。玻璃化定义了蛋白质分子在由无定形稳定剂形成的基质中的固定化,从而降低蛋白质分子之间的相互作用,从而防止其结构的变化。水置换机制是基于稳定剂糖的羟基和蛋白质的极性基团之间氢键的形成,在干燥过程中取代了水和蛋白质之间的氢键,从而允许保留蛋白质分子的天然形式。
2. 填充剂
填充剂能为冻干饼提供适当的结构,有助于冻干饼块的适当形态,形成孔结构,孔隙率是冷冻水升华的先决条件,较大的孔隙可以更快地升华,因此可以减少初级干燥时间。添加填充剂可实现更短的初级干燥(产品温度Tp˃Tg'或Tc)时间,可作为优化生物制药冻干过程的方法。
3. 缓冲剂
缓冲剂的作用是将溶液的pH值维持在保持蛋白质具有较好稳定性的条件。可根据蛋白质的等电点选择溶液的pH,为了防止使用后的刺激,疼痛和副作用,pH需要在人体生理可接受范围内。结合目前已上市的生物制剂以及相关研究,生物蛋白质药物大多缓冲区间在pH4.6-8.2范围内。蛋白质分子在冻干、复溶和储存过程中暴露于不同的降解条件,因此选择合适的缓冲液至关重要。
4. 表面活性剂
表面活性剂在蛋白质制剂中的作用是通过表面活性剂吸附到蛋白质表面的疏水区域或冰/空气和水之间的界面来防止蛋白质表面聚集。表面活性剂增加了蛋白质展开所需的自由能,并降低了冻干和复溶过程中形成界面的表面张力。在复溶过程中,有助于冻干饼块的复溶。
富睿捷原位冻干机Mercury系列0.1㎡、0.3㎡机型,不仅可以做冻干处理,还能真正实现整个冻干过程可控,使得样品冻干效率更高,能耗更低,冻干的品质更佳,样品结果均一性高,冻干工艺的重复性好。另外,还可以实现冻干工艺的摸索,优化,放大工艺,共晶点测试等。制冷系统采用自主研发混合制冷技术,可实现温度更低,稳定性更好。不锈钢冷阱的冷凝温度低达-80°C左右,冻干仓真空度可达 0.2Pa。
原位冻干机优势:
■内置直立式不锈钢冷阱盘管,能够更捕获样品冻干过程中升华的水汽,使得冻干仓里的水汽更少,避免水汽在冻干仓內形成內循环,让仓体內的水汽液化成液滴附着在样品,整个过程是放热反应,如若处理不当会造成有些样品融化、变质或坍塌等;
■标配高精度皮拉尼真空计,保证真空度的准确性,能够更好的完成冻干实验,最终实现品质、效率,能耗的平衡;
智慧化冻干终点判定系统,可以预判冻干完成时间点。可避免通过采样检测,外挂检测等方式判断冻干是否完成,让整个实验过程省时,省心,省力。
■预冻温度可达-76℃,可充分保证样品冻结状态,做好样品的预冻处理,也保证了诸如一些低共晶点样品不会因为温度不够而融化或预冻不结实等问题。
■隔板温度范围-55℃到55℃;更大的温度调控范围,为冻干曲线摸索和优化,工艺放大提供便利条件,提供更大范围的冻干过程的隔板温度调控,实现冻干效率,包括探寻最佳的冻干曲线等。
■隔板的温差为±1℃,能够保证均一性,合格率更高。